Fully Automated Brain Tumor Segmentation Using Two MRI Modalities

نویسندگان

  • Mohamed Ben Salah
  • Idanis Diaz
  • Russell Greiner
  • Pierre Boulanger
  • Bret Hoehn
  • Albert Murtha
چکیده

An algorithm is presented for fully automated brain tumor segmentation from only two magnetic resonance image modalities. The technique is based on three steps: (1) alternating different levels of automatic histogram-based multi-thresholding step, (2) performing an effective and fully automated procedure for skull-stripping by evolving deformable contours, and (3) segmenting both Gross Tumor Volume and edema. The method is tested using 19 hand-segmented real tumors which shows very accurate results in comparison to a very recent method (STS) in terms of the Dice coefficient. Improvements of 5% and 20% respectively for segmentation of edema and Gross Tumor Volume have been

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

Efficient Brain Tumor Segmentation using Support Vector Machines

Segmentation of anatomical elements of brain is the fundamental problem in health image analysis. The aim of this work is to create an automated method for mind tumor quantification using MRI picture data units using support vector machines. A brain tumor segmentation method has become developed and validate segmentation on 2D & 3D MRI Data. This technique doesn't require any initialization whi...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013